PPG Springdale Plant -Paint Filling Line Study

Gracie Dunn, Cara Lao, Josh Line, Matt O'Connor, Zach Romac, Natalie Weckesser, James Zhao

The Team

Gracie Dunn

Cara Lao

Josh Line

Matthew O'Connor

Zach Romac Natalie Weckesser

James Zhao

Problem Statement

PPG's light cell is not meeting its demand in the regularly scheduled 5 day work week.

Hypothesized Causes

- Long fill times
- Manual fill process
- Production planning
- Workforce scheduling
- Balance of filling with other steps

- Varying interpretations of SOP
- Adherence to procedure
- Poor data collection
- Old equipment
- Outdated Procedure

Categories of Variation

Man

Machine

Material

Method

Environment

Measurement

Environment

🔳 Man

- Long fill times
- Manual fill times
- Workforce scheduling
- Varying interpretation of SOP

Material

• Balance of filling with other steps

Method

- Long fill times
- Manual fill times
- Production scheduling
- Workforce scheduling
- Balance of filling with other steps
- Varying interpretation of SOP
- Poor data collection
- Old procedure
- Waiting on raw materials

Machine

- Long fill times
- Old equipment

Solution Channels

Data Gathering

From PPG

- Current CAD
- Current SOP
- 2019 Production Data

Collected Data

- Filling steps to generate process map
- Fill process time data
- Worker testimonials regarding procedure
- Automated machine information

Assumptions

Automation

 Statistics provided by machine vendors are accurate

 Cost of installation is consistent across alternatives

Resource Allocation

• Standard 8 hr day/3 shifts

• There is always an opportunity for a worker to fill

Standardization

• Every worker has reviewed the SOP

 Every worker has been trained through shadowing

Limitations and Barriers

Time Studies & Observations

- Quantitative
 - Time distribution
 - Large variation in times

Time Studies & Observations

- Qualitative
 - Variation between workers
 - Long breaks
 - Lack of adherence to SOP

Handling the Data

- Grouped Data in different ways and assessed using ANOVA
- Once groups were determined, distributions were fit using ARENA

Assumptions - Model

- Standard 8 hr day/3 shifts
- There is always an opportunity to fill
- Workers take two 15-minute breaks, a 30 minute lunch, start each shift with a 15-minute production meeting and end with a 15-minute clean-up
- Each worker performs all tasks associated with filling one pallet and is thus "seized" by the order at the start of the process
- Every worker has reviewed the SOP and has been trained accordingly

Discrete Event Simulation Model: an Overview

- Models the filling process at the light cell
- Tracks the production of drums, totes, and pails during a shift
- Based off of limited collected data: can only use it in specific ways

Discrete Event Simulation Model: Verification

- Coded using the R Package Simmer
- Verified using Excel

Capacity and Schedule

#Allow Capacity to Change capacity = .7 #CHANGE THIS to change capacity

```
standard <- c(0,15,135,15,105,30,90,15,60,15,0)
wCapacity <- c(standard[1],standard[2],capacity*standard[3],standard[4],capacity*standard[5],standard[6],capacity*sta
ndard[7],standard[8], capacity*standard[9],standard[10],standard[11])
SumwCapacity <- vector(mode = "numeric", length = 10)
SumwCapacity[1] = 0
for (i in 2:11){
    SumwCapacity[i]= SumwCapacity[i-1]+wCapacity[i]
}
SumwCapacity[1] = SumwCapacity[10]+sum(standard[c(3,5,7,9)])*(1-capacity)</pre>
```

Set the Environment

Schedule inputs

ScheduleInMinutes <- SumWCapacity[2:11] ScheduleInSeconds <- 60*ScheduleInMinutes ResourceDuringShift <- c(NumWorkers,0,NumWorkers,0,NumWorkers,0,0,0) LengthOfShift = 8*60*60 #Eight hours/shift, 60 minutes/hour, 60 seconds/minute

A single shift schedule

ShiftSchedule <- schedule(
 ScheduleInSeconds,
 ResourceDuringShift,
 period = LengthOfShift)</pre>

RunTime inputs

ShiftsRun = 15 *#CHANGE THIS to change number of shifts run* RunTimeSeconds = LengthOfShift*ShiftsRun

Fill Rate of Pump

CurrentFillRate = function() 394 + rexp(n = 1, rate = 1/220)
AutomatedSystemFillRateDrum = function() 5*60 #make sure this is in seconds!!
AutomatedSystemFillRateTote = function() 5*60 #make sure this is in seconds!!
#CHANGE THIS to match the system
FillRateToUseDrum = AutomatedSystemFillRateDrum
FillRateToUseTote = AutomatedSystemFillRateTote

#CHANGE THIS to tell model either CurrentFillRate or AutomatedSystemFillRate

Integrate Collected Data

```
EmptyPalletTransportDist \leftarrow function() rtri(n = 1, min = 7.5, max = 62.5, mode = 18.4)
PrepDist <- function(){</pre>
  m \ll runif(n = 1, min = 0, max = 1)
  if (m<=.5){ #Stickers during fill 50% of time</pre>
    PrepTime <- rnorm(n = 1, mean = 71.7, sd = 31.4)
    return(PrepTime)
  }else{ #Stickers during prep 50% of time
    PrepTime <- rnorm(n = 1, mean = 326, sd = 60.2)
    return(PrepTime)
PrepNoStickers <- function() rnorm(n = 1, mean = 71.7, sd = 31.4)</pre>
DrumPumpDist <- FillRateToUseDrum
TotePumpDist <- FillRateToUseTote
CloseDist \leftarrow function() 28 + rexp(n = 1, rate = 1/85.7)
FullPalletTransportDist <- function() runif(n = 1, min = 27.5, max = 72.5)
TransitionDist <- function() rtri(n = 1, min = 5, max = 130, mode = 15.4)
QueueDist - function() 9 + rweibull(n = 1, shape = 251, scale = 0.557)
```

Build Worker Paths

Initiate the Simulation

Initiate Simulation- arrival of different containors is designed to follow proportions of containors for 2019, assumed poisson arrival to Env <- simmer("PPGLightCell") %>% add_resource("worker", capacity = shiftSchedule) %>% add_generator("pail", pail, function() rpois(n = 250, lambda = 1.8))%>% add_generator("drum", drum, function() rpois(n = 250, lambda = 0.0743))%>% add_generator("tote", tote, function() rpois(n = 250, lambda = 0.147)) Env %>% run(until = RunTimeSeconds) ThroughPut <- Env %>% get_mon_arrivals() Discrete Event Simulation to Predict Improvement

- Take the base model and manipulate it to show model the process with proposed changes
- We can give % increase in throughput

Assumptions - Automation

- Statistics provided by machine vendors are accurate
- Cost of installation is consistent across alternatives
- Difference in company delivery time is negligible
- Estimates received before pandemic still hold

CAD Layout

- Two recommendations
- Removal of add cell
- Removal of fill station
- Movement of pallet storage

CAD Layout

Machines Pros and Cons

- 10 machines compared
- Ranked machines
 - Highest priorities from PPG
- Same information for all machines

Paint Machines

- Ideal-Pak
 - PT-IF
 - PT-IF/PT-BF Auto

- Specialty Equipment
 - ADF-5540
 - Palletized Drum and IBC Filler

Cost Analysis

Machine:	ADF-5540	Palletized Drum & Tote Filler	PT-IF	PT-IF/PT- BF Auto
Drum Fill Rate	48 / hr	50 / hr	60 / hr	60 / hr
Estimated Cost of Machine	\$425,000	\$95,000	\$90,000	\$120,000
Predicted Improvement	28.60%	31.69%	44.79%	64.79%

Implementation Plan

Short term

New SOP

Long term

- New device
- Change layout
- New SOP

Implementation Plan

In-house

- Piping adaptations
- Removal of scale
- Removal of add cell
- Dock door

Outsourced

- Delivery of machine
- Installation of machine
- Calibration

Final Deliverables

- Formal report
- Portfolio of recommendations
- CAD file with automated system
- Process map
- Model code, user guide, and time study data
- Formally documented assumptions

Acknowledgements

- Brett Hyndman
- Adam Zatorsky
- Rich Trail
- Josh DiBucci

- Jeff Fyock
- Robert Feehan
- Dr. Mike Sherwin
- Pitt IE Department

Questions?

