

Rahul Bidanda Project Lead

Andrew DiPalma
Communications Lead

Ryan Fossick Administrative Lead

Dan Denoncour Data Analysis Co-Lead

Spencer ZacherData Analysis Co-Lead

01

PROJECT BACKGROUND

02

PLANNING AND PROJECT MANAGEMENT

03

ANALYSIS

04

RESULTS

05

RECOMMENDATIONS

THE CLIENT

Perfection Pet Foods (PPF) is an extruded dry pet food and baked biscuit manufacturer in Visalia, CA.

They produce a private label for retailers and contract manufacturing for brand owners.

Their facility is state-of-the-art with a significant focus on food safety.

HIGH YIELD LOSS (SHRINK)

Perfection Pet Foods (PPF) has seen higher shrink than expected on Kibble

PROBLEM STATEMENT

The variables that cause shrink in kibble are unknown and PPF is unable to control or reduce shrink

SYSTEMIC EFFECTS

- Total loss in end product
- Decrease in profit
- Decrease in capacity
- Disrupted scheduling

- · Dog & Cat Kibble
- Batch Sizing
- Determine Causes of Shrink
- Analyze Formula sequencing
- Data 2019-Present

Out of Scope

- Biscuit Manufacturing
- · Facility Layout
- Cost Savings Calculations
- Data before 2019

Identify possible causal vairables

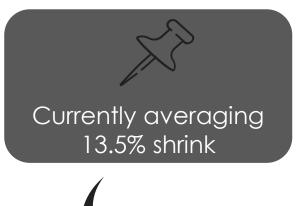
Determine variables' impact on shrink

Develop tools to optimize shrink

Enable client to understand and control shrink

Design a solution
using both
quantitative and
qualitative methods

Use a comprehensive approach that integrates Pitt's IE


Curriculum

Develop Leadership, Teamwork, and Project Management skillsets

Refine Presentation, Communication, and Professional skillsets

Target of average 7% shrink

MEASURE

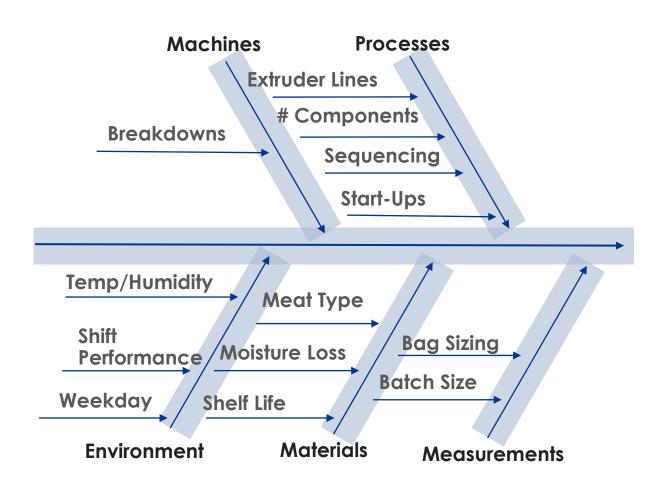
Data collection and orginization

IMPROVE AND CONTROL

Discuss results with client, provide recommendations

DEFINE

Outline the problem and define scope.


ANALYZE

Process data with Excel and Minitab

REPORT

Finalize suggestions and develop report and presentation

STAGE 1

- Data provided was reviewed
- Additional data was requested
- Additional data on extruders, breakdowns, scheduling, ingredients, etc. was reviewed

STAGE 2

To conduct a multivariate analysis, an attempt at combining data sets was started.

The Run ID was the best unique identifier

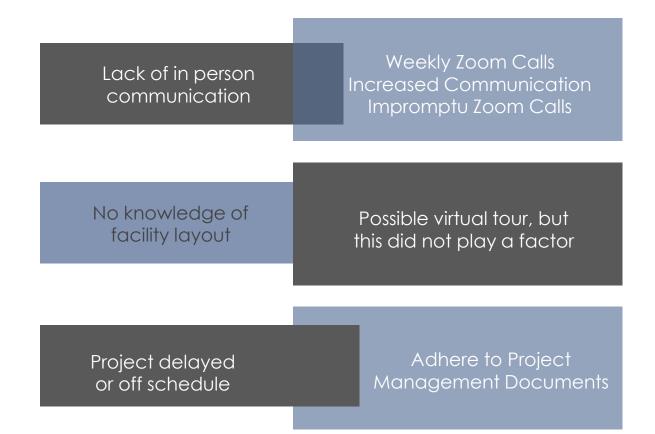
STAGE 3

A "Pseudo Run ID" was developed for datasets without Run ID. This helped combine some of related data.

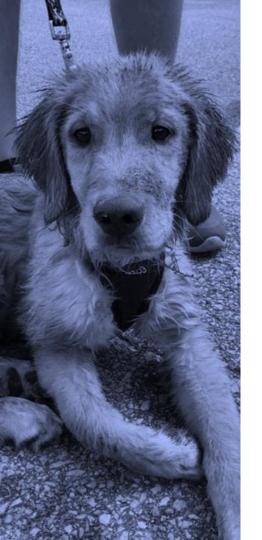
Ex. WLDKN310-4/22/2020

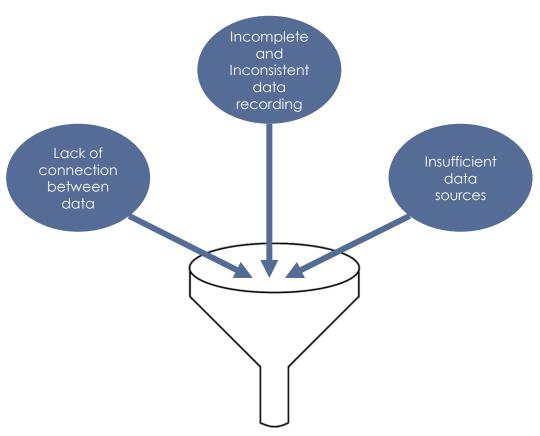
SOFTWARE TOOLS

Excel Access Minitab VBA & Macros

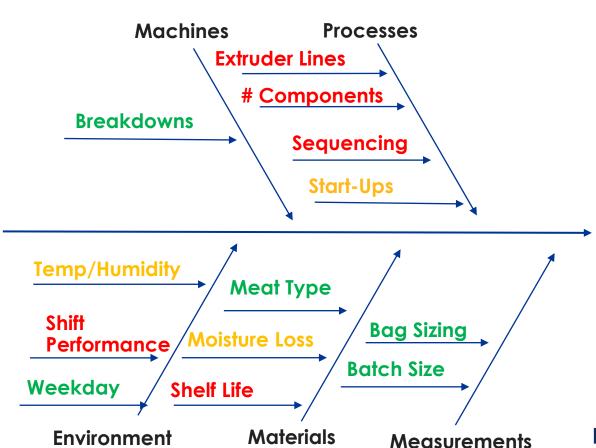

STATISTICS

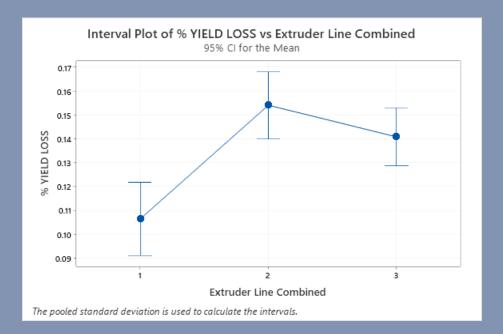
ANOVA Regression Correalation Tukey's Tests


VISUALIZATIONS

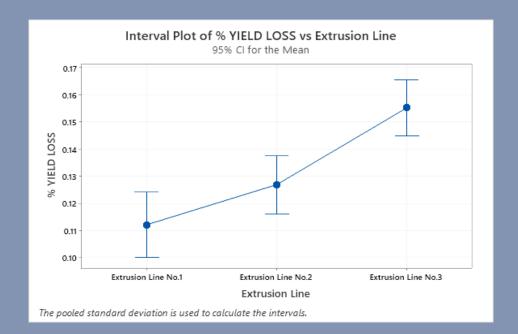

Box Blots
Histograms
Confidence Intervals
Pivot Charts and Tables







Key: Promising Results Insignificant Insufficient data



Extrusion Line	Number of Runs	Average Batch Size (Tons)	Shrink %
1	167	80.54	10.64%
2	202	81.03	15.41%
3	263	96.10	14.10%
Total	632	87.17	13.60%

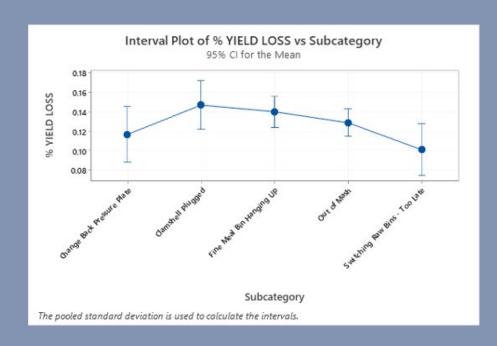
Sample is only 1/3 of runs from March 2019 - April 2020, only mono-kibble formulas.

Extrusion Line 2 and 3 are significantly higher than Extrusion Line 1.
However, due to inadequate data, no further conclusions can be drawn.

Higher values in scrap lead to more shrink, as seen on Extrusion Line 3.

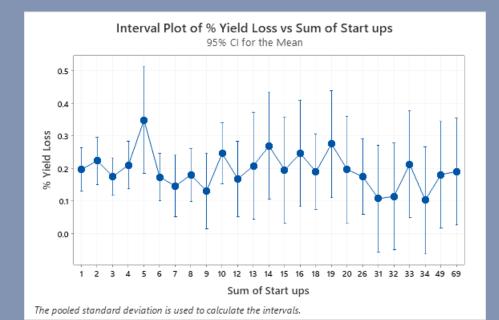
Extrusion Line	Number of Runs	Scrap (Tons)	Shrink %
1	167	67	11.21%
2	202	97.3	12.68%
3	263	138.5	15.51%
Total	632	302.8	13.34%

Grouping Information Using the Tukey Method and 95% Confidence


Extrusion Line No.3 231 0.15506 A

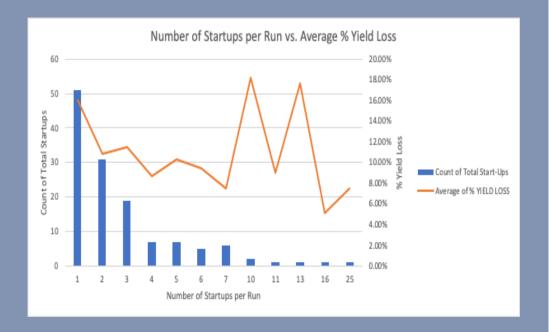
Extrusion Line No.2 210 0.12682 B

Extrusion Line No.1 169 0.11208 B


Means that do not share a letter are significantly different.

There is no statistical difference in the shrink caused by the 5 most common breakdowns

Breakdown	Occurences	Mean Shrink %	
Change Back Pressure Plate	25	11.68%	
Clamshell Plugged	33	14.68%	
Fine Meal Bin Hanging Up	77	14.00%	
Out of Mash	103	12.88%	
Switching Raw Bins	29	10.12%	


Data from the combined Shrink Database and Extrusion Moisture Tracking Database was used.

Only data for April-December 2019 could be used, and a large portion was missing.

There is no statistical difference for number of startups and shrink.

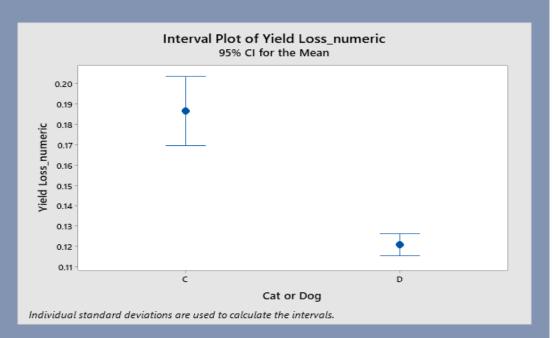
There is room for improvement on startup data collection.



This startup data shows that as startups increase, shrink begins to decrease.

PPF provided additional startup data for January – March of 2020

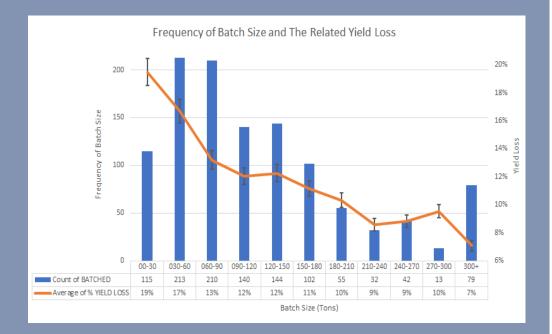
There were discrepancies in the data, limiting the analysis accuracy.



Meat Type	Occurences	Mean Shrink %	
Beef	74	11.03%	
Chicken	452	13.94%	
Grain	190	10.34%	
Lamb	78	11.96%	
Salmon	148	12.39%	
Turkey	91	18.44%	

Turkey has a significantly higher shrink compared to other meat types.

Turkey is frequently produced in small batches – this brings attention to the influence on batch sizes.

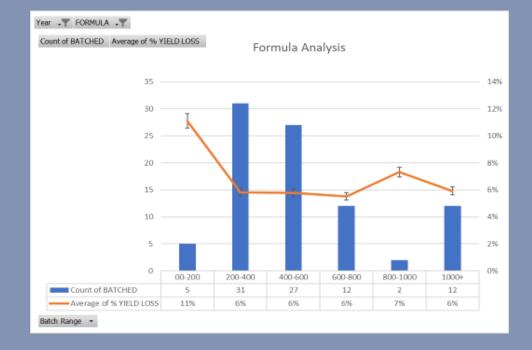


Food Type	Occurences	Mean Shrink %	
Dog	980	12.10%	
Cat	189	18.66%	

Cat Food has a significantly higher shrink compared to Dog Food formulas.

Cat Food is typically run in small batches – again leading to believe batch size plays a role in shrink.

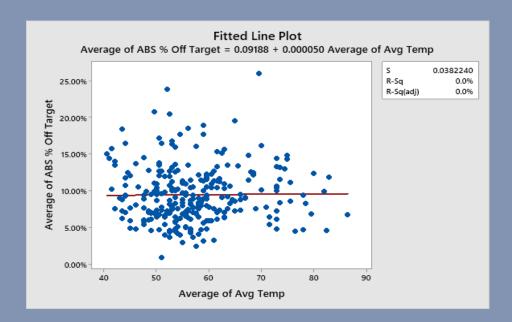
Data was binned with a width of 30 tons.


Any data >300 tons was accounted for in the overflow bin.

An analysis was performed for kibbles, slurrys, etc.

74% of the production runs are batched at less than 150 tons, and have an average shrink ranging from 12-19%

The analyses on dog kibble, cat kibble, and slurry yielded the same patterns and conclusions.

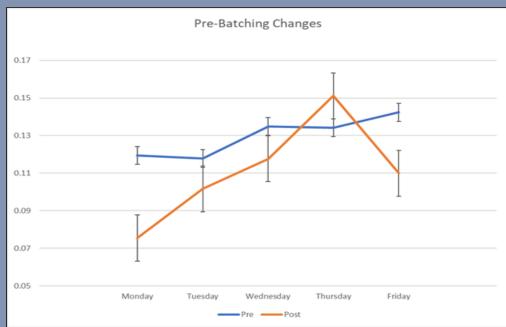

Some formulas have different trends and batch sizing can be done on a formula specific basis.

An Excel based tool was built for the PPF Team to analyze Formulas on a case by case basis.

Formula WLDKN310 typically runs batch sizes 300-1000 tons.

Shrink again decreases as the batch size increases to 200+ tons.

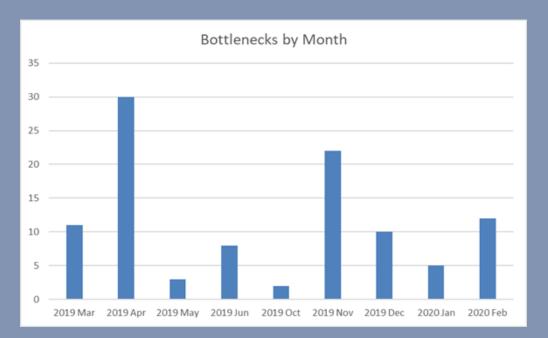
PPF's Factory is not climate controlled.


Historic weather data was extracted from the NOAA website.

Data was combined with the Shrink Database.

No relation between temperature change and the shrink.

A similar analysis was completed for only days with a mean temperature >85 ° F, with repeated results.



PPF increased their efforts on pre-batching formulas beginning in 2020 Q2

Pre – 2019 & 2020 Q1 Post – 2020 Q2 Shrink is lower earlier in the week, possibly due to pre-batching.

The increased attention to pre-batching may have reduced bottlenecks and caused a reduction in shrink.

Bottlenecks were analyzed to determine if prebatching had a positive effect on the system.

This data is manually collected by the operational staff.

Bottleneck data appears to be very volatile between each month.

Performance is either truly this random, or data on bottlenecks is not recorded fully.

Coefficients

Constant 0.1025 0.0161 6.36 0.000 3 0.0413 0.0297 1.39 0.166 1.59 4 0.0242 0.0353 0.69 0.494 1.72 5 0.1473 0.0267 5.51 0.000 1.47 7 0.1490 0.0342 4.36 0.000 1.46 11 -0.0469 0.0591 -0.79 0.428 1.41 12 0.022 0.125 0.18 0.860 1.28 14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20 <th>Term</th> <th>Coef</th> <th>SE Coef</th> <th>T-Value</th> <th>P-Value</th> <th>VIF</th>	Term	Coef	SE Coef	T-Value	P-Value	VIF
4 0.0242 0.0353 0.69 0.494 1.72 5 0.1473 0.0267 5.51 0.000 1.47 7 0.1490 0.0342 4.36 0.000 1.46 11 -0.0469 0.0591 -0.79 0.428 1.41 12 0.022 0.125 0.18 0.860 1.28 14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	Constant	0.1025	0.0161	6.36	0.000	
5 0.1473 0.0267 5.51 0.000 1.47 7 0.1490 0.0342 4.36 0.000 1.46 11 -0.0469 0.0591 -0.79 0.428 1.41 12 0.022 0.125 0.18 0.860 1.28 14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	3	0.0413	0.0297	1.39	0.166	1.59
7 0.1490 0.0342 4.36 0.000 1.46 11 -0.0469 0.0591 -0.79 0.428 1.41 12 0.022 0.125 0.18 0.860 1.28 14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	4	0.0242	0.0353	0.69	0.494	1.72
11 -0.0469 0.0591 -0.79 0.428 1.41 12 0.022 0.125 0.18 0.860 1.28 14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	5	0.1473	0.0267	5.51	0.000	1.47
12 0.022 0.125 0.18 0.860 1.28 14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	7	0.1490	0.0342	4.36	0.000	1.46
14 -0.245 0.469 -0.52 0.602 1.11 15 0.0184 0.0237 0.78 0.439 1.61 20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	11	-0.0469	0.0591	-0.79	0.428	1.41
15	12	0.022	0.125	0.18	0.860	1.28
20 -0.217 0.142 -1.52 0.129 1.03 23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	14	-0.245	0.469	-0.52	0.602	1.11
23 -0.391 0.943 -0.41 0.679 1.20 24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	15	0.0184	0.0237	0.78	0.439	1.61
24 0.0255 0.0307 0.83 0.408 1.74 28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	20	-0.217	0.142	-1.52	0.129	1.03
28 -0.0137 0.0220 -0.62 0.535 2.18 30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	23	-0.391	0.943	-0.41	0.679	1.20
30 0.0701 0.0193 3.63 0.000 2.49 40 -0.0511 0.0373 -1.37 0.172 1.20	24	0.0255	0.0307	0.83	0.408	1.74
40 -0.0511 0.0373 -1.37 0.172 1.20	28	-0.0137	0.0220	-0.62	0.535	2.18
	30	0.0701	0.0193	3.63	0.000	2.49
50 0.0141 0.0222 0.62 0.527 1.00	40	-0.0511	0.0373	-1.37	0.172	1.20
30 -0.0141 0.0225 -0.05 0.327 1.90	50	-0.0141	0.0223	-0.63	0.527	1.90

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant					
Small	0.07565	0.00982	7.71	0.000	1.04
Medium	0.0104	0.0124	0.84	0.402	1.04

Coefficients

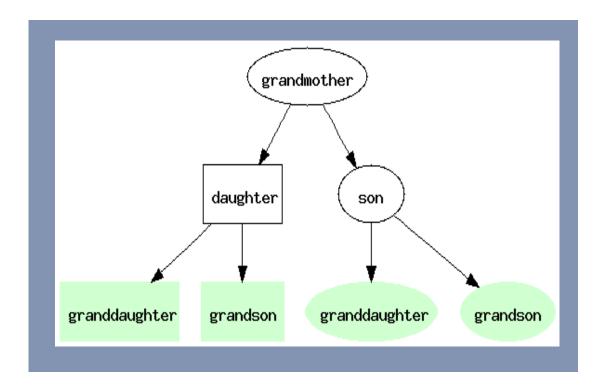
Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	0.1307	0.0104	12.58	0.000	
Large	-0.0104	0.0124	-0.84	0.402	2.19
Small	0.0652	0.0142	4.58	0.000	2.19

PPF does not weigh each bag produced, and assumes the bag fill weight is correct.

This bag fill weight is used to create an estimate of product produced – which is used to calculate shrink.

A higher proportion of small bags produced leads to a higher shrink.

Using the estimated tonnage of product made leads to an inflation in shrink.



Recommendations, Implementations & Benefits

Data Collection Recommendations

Overall Recommendation: Introduce a Hierarchical format for data collection

Recommendation 1: Lot #/Run ID Implementation

Recommendation:
Incorporate a
unique identifier in
each of PPF's
datasets

Implementation:
Include a column in each of the datasets for Run ID
Ex: 2004-28

Tear Month Run #

Benefit:
Would allow for all datasets to be combined and for multivariate analysis to be conducted

Recommendation 2: Recording Shrink and Extrusion Line for each Run

Recommendation:
Develop a means to
look at the shrink
and extrusion line for
all runs including
multi-kibbles

Implementation:
Include the extrusion
line and shrink for all
runs in the shrink
database

Benefit:
Ability to analyze
formula sequencing
and multi vs. mono
kibble formulas

Recommendation 3: Record Shrink by Shift

Recommendation:
Create a way to
analyze the
performance of
different shifts
relative to shrink

Implementation:
Include a shrink by
shift in the Extrusion
Moisture Tracking
database

Benefit:
Performance indicator
for the different shifts

Recommendation 4: Track the start and end time for each run

Recommendation:
Provide more detail in regards to start time, end time, and when a run breaks down in the shrink database

Implementation
Record the specific
time for every start
and stop of the
extrusion process

Benefit:
Allows for a deeper analysis on how breakdowns effect shrink

Recommendations, Implementations & Benefits

Process Recommendations

Recommendation 5: Reevaluate Batch Sizing

Recommendation: Run formulas at an optimal batch size that would yield the smallest amount of

shrink

Implementation
Use the Pitt IE team's
Excel tool to view
historical batch sizing
per formula and use
this information to help
decide the size of a
batch

Benefit:

The PPF team would be reducing the amount of shrink for each formula run

Recommendation 6A: Re-analyze Bag Size Proportions and Weighing Techniques

Recommendation:
Weigh finished
materials before
bagging, or sample
filled bags.

Implementation:
Record actual amount of material produced.

Benefit:
Understand
variance in runs and
calculate correct
shrink.

Recommendation 6B: Re-analyze Bag Size Proportions and Weighing Techniques

Recommendation:
Perform a cost benefit
analysis to determine
what proportion of bag
sizes to produce.

Implementation:
Determine the balance between optimizing the shrink and managing inventory/demand.

Benefit:
Reduce costs
associated with
both inventory
carrying costs and
shrink.

Recommendation 7: Re-evaluate Extrusion Line Three

Recommendation:

Observe extrusion line three closely in the future to determine why it has a higher shrink than the other two extrusion lines

<u>Implementation</u>

Begin recording the extrusion line number and shrink for every run across all extruders so that more analysis can be done

Benefit:

More in-depth analysis on extrusion line three could be performed and its shrink lessened

QUESTIONS?

